

Advanced Computational Neuroscience Network (ACNN)

Midwest Workshop on Big Neuroscience Data, Tools, Protocols & Services

Sept 27, 2016

This report summarizes the goals, activities, results and outcomes of the 2016 Advanced Computational Neuroscience Network (ACNN) Workshop on *Big Neuroscience Data, Tools, Protocols and Services*.

Contents

Background	2
Workshop Logistics	2
Organizers	2
Goals	3
Summary Statistics	3
Workshop Contacts	4
Workshop Handbook	4
Program	5
Day 1 (Tue 9/20/16)	5
Day 2 (Wed 9/21/16)	6
Working Groups	7
Unconference Breakout Sessions	7
Day 1 Breakout Sessions	7
Day 2 Breakout Sessions	7
Hands-on/Try-It-Now Demos	8
Lightning Talks	8
Shareable Resources	11
Trainee/Fellow Scholarship Application	11
Partner Participation	12
Sponsors	14
Post-conference Evaluation	15
Notes	22
Participants	23
Event Photos	27

The Advanced Computational Neuroscience Network (ACNN) is partially supported by NSF grants <u>1636840</u>, <u>1636846</u>, <u>1636893</u>, <u>1636850</u>, and <u>1550320</u>.

Background

In fall 2015, investigators from the University of Michigan, Indiana University, Ohio State University, Case Western Reserve University, Washington University, and Northwestern University teamed up with other 45 researchers in academic institutions (University of Missouri-Columbia, Purdue University, Iowa University, Kansas University, Cincinnati Children's Hospital, Michigan State University, University of Minnesota, University of Nebraska, Medical College of Wisconsin, University of South Dakota, University of Illinois at Urbana-Champaign, Stanford University, New York University, Columbia University, University of Colorado, University of Southern California, University of Calgary) and industry partners (General Electric, Flywheel, Siemens) to form the Midwest Advanced Computational Neuroscience Network (ACNN).

- In Summer 2016, the Midwest Big Data Hub (<u>http://MidwestBigDataHub.org</u>) announced a funding award to support the inaugural ACNN Workshop under the Computing Community Consortium (CCC).
- In September 2016, the National Science Foundation announced the funding the ACNN as a MBDHub Spoke (<u>http://www.nsf.gov/awardsearch/showAward?AWD_ID=1636840</u>).
- The ACNN Workshop took place September 19-20, 2016 at the Michigan League, University of Michigan, Ann Arbor, MI.

The mission of the Network is to build broad consensus on the core requirements, infrastructure, and components needed to develop a new generation of sustainable interdisciplinary Neuroscience Big Data research.

Workshop Logistics

Venue	Michigan League , University of Michigan, 911 N University Ave, Ann Arbor, MI 48109, Phone: (734) 764-0446, Web: <u>https://uunions.umich.edu/league</u>
Dates	September 20-21, 2016
Accommodation	 Michigan League, University of Michigan, 911 N University Ave, Ann Arbor, MI 48109, Phone: (734) 764-0446, Web: <u>https://uunions.umich.edu/league</u> The Holiday Inn Near the University of Michigan, 3600 Plymouth Road, Ann Arbor, MI 48105, 734-796-9800, Web: <u>http://www.hiannarbor.com</u>
Travel Scholarships	43 Travel scholarships were awarded to Students, Postdocs, Fellows, and other Trainees on a first-come-first-serve bases
URL	www.NeuroscienceNetwork.org/ACNN_Workshop_2016.html

Organizers

- o University of Michigan: Ivo Dinov, Rich Gonzales, George Alter
- o Indiana University: Franco Pestilli, Olaf Sporns, Andrew Saykin
- o OSU: Dhabaleswar Panda, Khaled Hamidouche, Xiaoyi Lu, Hari Subramoni

- o CWRU: Satya Sahoo
- o Washington University: Daniel Marcus, and Northwestern University: Lei Wang

Goals

Students, trainees, fellows, junior investigators, and outside researchers in Midwest academic institutions and industry partners attended and actively participated in this workshop. The workshop goals included

- (1) building an active Midwest Neuroscience Network Community,
- (2) open-sharing of data-intense challenges, datasets, research projects, expertise, software, services, protocols, resources, learning modules, and
- (3) productive discussions of joint (multi-institutional) grants, training opportunities, publications, research projects.

The workshop organizers and presenters promoted open-science and deep community involvement (early registration, active workshop participation, post-workshop activities and interactions). A diverse array of participants attended the workshop and the early evidence suggests the formation of new collaborations on development of software tools, services, learning materials, end-to-end pipeline workflows.

Summary Statistics

Statistics	Values	Notes
Number of Attendees	101	registered only
Number of Participating Trainees	63	
Number of Participating Institutions	15	
Number of Academic Institutions	22	
Number of Government and Non-profit Orgs	3	
Number of Participating Industry Partners	5	
Number of scholarships awarded	43	
Number of US States represented	13	
Number of Presentations	32	conference and unconference

Workshop Contacts

- Administrative: Alison Martin (aalison@med.umich.edu)
- Programmatic: Ivo Dinov <u>statistics@umich.edu</u>
- ACNN Network: <u>info@NeuroscienceNetwork.org</u>

Workshop Handbook

A workshop Handbook was designed and disseminated at the workshop to help attendees with logistics, program, activities and processes.

Program

Timo	Day 1 (100 9/20/10)			
Time	Sessions	Details		
8-9 AM	Registration	Onsite registration, nametags, booklets, breakfast, coffee, networking		
9:00-9:45	Workshop Overview ACNN Background, Scope Organization/Format	 Workshop Overview (Ivo Dinov), 15 min Midwest Big Data Hub Health Sciences (Brian Athey), 15 min Advanced Computational Neuroscience Network (Rich Gonzalez), 15- min 		
9:45-12:15	Big Neuroscience Data, Gaps/Barriers, Analytical Methods, Available Resources, Distributed Services, and Opportunities	 Indiana Computational Neuroimaging Research (Franco Pestilli) 20 min OSU Network Based Computing (Dhabaleswar Panda, Khaled Hamidouche, Xiaoyi Lu, Hari Subramoni) 20 min CWRU Biomedical and Healthcare Informatics (Satya Sahoo) 20 min CWRU Biomedical and Healthcare Informatics (Satya Sahoo) 20 min HumanConnectome: Neuroimaging Informatics and Analysis Center (Daniel Marcus) 20 min SchizConnect: Flexible, Dynamic Platform for Mediating Multiple Schizophrenia Neuroimaging Databases (Lei Wang) 20 min Michigan Institute for Data Science (Ivo Dinov), 20 min 		
12:15-1:15	Lunch Break			
1:15-3:15	Unconference Breakout Sessions (4 consecutive slots of 30-min each). Participants are encouraged to lead breakouts and mix with others.	Informal self-organized sessions (30-minutes each), round-robin rotations Web-form: <u>https://goo.gl/bKWNvi</u>		
3:15-3:30	Break			
3:30-4:30	Breakout sessions reports Web-form: <u>https://goo.gl/bKWNvi</u>	Analytics Pipelines Tools/Services Challenges Known Solutions Predictive analytics - methods, tools, protocols, workflows Provenance (data, protocols, results, reproducibility or research findings) Computational Neuroscience Methods Case-studies, data archives, Cloud Services		
4:30-5:30	Posters/Demos	Applications (brain mapping, imaging-genetics neurodegeneration)		
6:00-8:00 PM	Dinner	Social Networking		

Day 1 (Tue 9/20/16)

Day 2 (Wed 9/21/16) Time Sessions Details 8:00-8:30 AM Registration Onsite registration, nametags, booklets, breakfast, coffee, networking (1) Neuroscience Information Framework: A Cooperative And Collaborative Information, Resource, and Data Discovery Infrastructure (Jeff Grethe) 25 min (2) Indiana Computational Neuroimaging Research (Franco Pestilli) 25 min Core Big (3) OSU Network Based Computing (Dhabaleswar Panda, Khaled 8:30-11:00 Neuroscience Hamidouche, Xiaoyi Lu, Hari Subramoni) 25 min Infrastructure **BREAK 10-min** (4) CWRU Biomedical and Healthcare Informatics (Satya Sahoo) 25 min (5) Predictive Big Data Analytics (Ivo Dinov), 25 min 11:00-11:10 Break 3-5 min Rapid-Fire talks from the Midwest Big Data Community 11:10-12:10 Lightning Talks Web-form: https://goo.gl/bKWNvi 12:10-1:10 Lunch Break Unconference Informal self-organized sessions (30-minutes each), round-robin Breakout Sessions (3) rotations: Brain structure, Function, Diffusion, Physiology; File Formats; consecutive slots of Pipeline workflow Environments: Cloud Services: JIRA, GitHub, Trello, 30-min each). 1:10-2:40 AWS, MapReduce, Hadoop; Driving Biomedical/Healthcare Challenges, Participants are etc. encouraged to lead breakouts and mix Web-form: https://goo.gl/bKWNvi with others. 2:40-2:50 Break Analytics Pipelines Tools/Services Challenges Known Solutions Breakout sessions Predictive analytics - methods, tools, protocols, workflows 2:50-3:30 reports Provenance (data, protocols, results, reproducibility or research findings) **Computational Neuroscience Methods** Case-studies, data archives, Cloud Services Live Demos 3:30-4:00 Applications (brain mapping, imaging-genetics neurodegeneration) Try-It-Now Workshop Evaluation (http://goo.gl/forms/qSI6PGiN4PfTs6Fg1). 4:00 PM Conclusions Collaborations, joint papers, extramural grant opportunities, Shareable resources, Available Webapps, APIs, workflows Post-conference Generate a Report (due 1 month after workshop) Report

Working Groups

Participants were encouraged to self-organize working groups (e.g., training, TBI, ECoG, connectomics, compressive big data analytics, etc.) that focus on specific Big Neuroscience Data challenges resource, translational education activities, and collaborative opportunities.

These working groups (WG) are initiated organically, coalesce at the breakout sessions, or start informally at social networking periods (e.g., breaks). More information is available online: <u>https://docs.google.com/spreadsheets/d/1Nu8TAAIGL2kvr2bE7TiN9TK2L6oRRCEunI8MiMCHLRE/edit#gid=1581386323</u>

Unconference Breakout Sessions

During the Workshop, Breakout Sessions were proposed by a wide range of investigators from various Midwest academic, government and industry organizations. All participants **reviewed** and many **proposed** discussion topics at the appropriate times. Web-form: <u>https://goo.gl/bKWNvi.</u> Unconference Breakout Sessions included consecutive slots of 30-min each. Workshop participants self-selected to lead breakouts and mix with others. These were Informal self-organized sessions. Participants rotated through breakouts

Day 1 Breakout Sessions

- Deep learning for neurological image analysis (Alexandr Kalinin, akalinin@umich.edu, @alxndrkalinin, SOCR/DCM&B, University of Michigan) -- List of references: http://bit.ly/2cD8ydo
- Deep learning for neurological image analysis (Alexandr Kalinin, SOCR/DCM&B, University of Michigan) -- List of references: http://bit.ly/2cD8ydo --- 3D SparseConvNet: https://github.com/btgraham/SparseConvNet --- ICML Workshop on deep learning for small data: http://bit.ly/2cO2ob0
- Emerging Issues in Optical Imaging Data Analysis (Mark Reimers, Neuroscience, Michigan State)
- NSF Programs 2:15-2:30PM Fen Tsao NSF Big Data Projects programmatic interests 2:30-2:45PM Ken Whang NSF Computational Neuroscience and Infrastructure programmatic interests
- "Manifests & Metadata
- Defining a standard for container-based processing from data management platforms
- (John Flavin, XNAT, WashU; Gunnar Schaefer, Flywheel, Stanford)"
- Big Data and intracranial EEG (ECoG) (Stephen Gliske, University of Michigan)

Day 2 Breakout Sessions

- High-Performance Big Data Processing Tools for NeuroScience (Xiaoyi Lu, D. K. Panda, The Ohio State University)
- SCA: ONERE & RADY: Scalable Compute Archive system including data publishing, integrated pipeline processing on grid/cloud; Franco Pestilli; Arvind Gopu; Soichi Hayashi; John West Indiana University
- Integrated Cloud Data/Computational Platform/Visualization Engine (Ivo DInov, UMich)
- "DIPY Diffusion and Quantitative MRI analysis codebase; Eleftherios Garyfallidis Indiana University"
- Industry partners projects (10 mins each).
 - Victor Miranda GE, Machine learning applied to TBI.
 - Dingxin Wang Siemens, Data Acquisition Plan for Life-Span Human Connectome Projects.
 - o Can Akgun Flywheel, Neuroimaging data and algorithms management. each: 7

Hands-on/Try-It-Now Demos

During the conference, participants also signed to present and showcase hands-on their group's challenges, case-studies, datasets, software tools, services, computational infrastructure, and other materials and resources. Many open-science resources were showcased: <u>https://goo.gl/bKWNvi</u>. Examples of Demos included:

- SOCRAT: A Scalable Web Platform for In-Browser Interactive Data Analysis and Visualization (Alexandr Kalinin, SOCR/DCM&B, University of Michigan)
- DViewer: A web-based toolkit for dynamic visualization and analysis of tractography and MRI data (Syed Husain, SOCR/DCM&B, University of Michigan)
- Scalable Compute Archive system for data archival, metadata/protocol QC, integrated pipeline execution on grid/cloud; Arvind Gopu; Indiana University
- The open neuroscience embedded reproducibility environment (ONERE) web UI prototype ; Soichi Hayashi, Indiana University

Lightning Talks

During the workshop, dozens of 3-5 min Rapid-Fire talks from the Midwest Big Data Community were presented.

Index	Presenter	Affiliation	Title	Abstract
1	Alexandr Kalinin	SOCR/DCM&B, University of Michigan	SOCRAT: A Scalable Web Platform for In- Browser Interactive Data Analysis and Visualization	Common exploratory data analysis (EDA) and visualization workflows include platform dependent installation of software packages paired with case-specific low-level scripting in programming languages such as R or JavaScript, or extensive manual processing in interactive tools such as Microsoft Excel. These steps often assume coding skills as well as visualization expertise. To address these limitations we created the Statistics Online Computational Resource Analytics Framework (SOCRAT) — an interactive analytics toolbox which allows flexible, interactive data exploration and visualization on the web. SOCRAT workflows run completely in a web-browser, which makes them platform-agnostic and avoids any software installation requirements. Typical workflows start with entering, loading or simulating data, followed by data preprocessing and wrangling, and interactive data visualization to interrogate the data. Furthermore, it also supports data exploration via clustering and classification, accompanied by algorithm visualizations. As an HTML5 platform, SOCRAT was designed to easily add new charts and analysis modules into the its ecosystem, enabling seamless interaction with existing data input, storage, and analysis tools. This provides users with scalable platform for online data exploration that implements extensive charting capabilities, powerful analysis tools, user-friendly interactive interface, and easy customization.
2	Brad Sutton	Univ of Illinois at Urbana- Champaign	Local Eucalyptus Cloud for Enabling Exploratory High Throughput Neuroimaging Analysis: Initial Experience	The Biomedical Imaging Center at Beckman Institute at the University of Illinois has constructed a private Eucalyptus cloud for high throughput neuroimaging analysis. The system has 60 cores with 18GB RAM per core. Users can roll up small, medium, and large instances of the NITRC-CE (www.nitrc.org) with appropriate versions of neuroimaging software installed, similar to launching on AWS. Users can maintain specific versioning of different software components over the lifetime of the project in disk images. Users have found that the system provides a low-risk environment for performing large scale analysis and enables them to investigate the dependency of results on parameter choices. Examples of use include a large-scale project with 428 participants in which Freesurfer parcellations, bedpostx, and probtrackx2 were run for structural connectomes.
3	Brad Sutton	Univ of Illinois at Urbana- Champaign	PowerGrid for harnessing high performance computing to reconstruct large	Non-Cartesian acquisitions offer many benefits for neuroimaging with MRI, including: more efficient acquisitions, higher SNR in diffusion scans, shorter echo times, and flexible tradeoffs between spatial resolution and overall acquisition time. However, non-Cartesian acquisitions result in large raw data files that can take many weeks to reconstruct on commonly available workstations. This challenge is exacerbated if the data is to be reconstructed with a 64-channel head coil for parallel imaging, multi-shot acquisitions with phase

			sets of high- resolution non- Cartesian MRI data	navigation, magnetic field inhomogeneity correction for long readouts, and incorporating prior information. Here we demonstrate the development of open source image reconstruction code for non- Cartesian MRI leveraging GPUs and high performance computing resources via OpenACC and MPI to achieve computationally intensive reconstructions in reasonable time frames. The code is written to be similar to a popular open-source MATLAB
				reconstruction code through the use of the Armadillo linear algebra library. The code enables high performance MR image reconstruction on world-class systems, such as the Blue Waters supercomputer, while still being accessible and modifiable to researchers that are not HPC experts.
4	Xiaoyi Lu	The Ohio State University	High-Performance Big Data Processing Tools for NeuroScience	
5	Md. Wasi- ur-Rahman	The Ohio State University	High-Performance Hadoop and Spark MapReduce on Modern HPC Systems	Big Data processing and High Performance Computing (HPC) are converging fast to meet the challenges exposed by large-scale data analysis. MapReduce is being used extensively through different execution frameworks (e.g. Hadoop, Spark) on modern HPC systems. Most of these HPC systems follow the Beowulf architecture with separate parallel storage system and very limited local storage. Also, high performance interconnects (e.g. InfiniBand) used in these systems can provide extremely low latency and high bandwidth. Efficient utilization of these resources through enhanced designs for MapReduce is crucial. In this work, we present an enhanced MapReduce design for both Hadoop and Spark frameworks. It introduces RDMA (Remote Direct Memory Access) based shuffle engine to leverage the benefits of high performance interconnects. We also propose different deployment architectures while utilizing Lustre and provide fast shuffle strategies with dynamic adjustments. These works are publicly available under the High-Performance Big Data (HiBD) project.
5	Ming Tang	University of Michigan, Ann Arbor		A unique archive of Big Data on Parkinson's Disease is collected, managed and disseminated by the Parkinson's Progression Markers Initiative (PPMI). The integration of such complex and heterogeneous Big Data from multiple sources offers unparalleled opportunities to study the early stages of prevalent neurodegenerative processes, track their progression and quickly identify the efficacies of alternative treatments. Many previous human and animal studies have examined the relationship of Parkinson's disease (PD) risk to trauma, genetics, environment, co- morbidities, or life style. The defining characteristics of Big Data– large size, incongruency, incompleteness, complexity, multiplicity of scales, and heterogeneity of information-generating sources–all pose challenges to the classical techniques for data management, processing, visualization and interpretation. We propose, implement, test and validate complementary model-based and model-free approaches for PD classification and prediction. To explore PD risk using Big Data methodology, we jointly processed complex PPMI imaging, genetics, clinical and demographic data.Model-free Big Data machine learning-based classification methods (e.g., adaptive boosting, support vector machines) can outperform model-based techniques in terms of predictive precision and reliability (e.g., forecasting patient diagnosis). We observed that statistical rebalancing of cohort sizes yields better discrimination of group differences, specifically for predictive analytics based on heterogeneous and incomplete PPMI data. UPDRS scores play a critical role in predicting diagnosis, which is expected based on the clinical definition of Parkinson's disease.
6	Chao Gao	University of Michigan, Ann Arbor	Applications of Model-based and Model-free Techniques for Diagnostic Prediction and Classification of Amyotrophic Lateral Sclerosis(ALS)	
8	Alexander Gates	Indiana University	Comparing the Multi-scale	It has recently been argued that the human brain functions across many temporal and spatial scales. This multi-scale structure can be

			Structure of Human Connectomes	captured by complex networks which reveal how the pattern of connectivity between brain regions varies from local properties of the individual regions to the global organization of the entire system. The community structure of functional brain networks, in particular, has been related to cognitive behavior with reported alterations in structure for brains in disease. Here, we introduce a framework for the comparison of network communities with multi-scale structure that intuitively captures how individual scales contribute to the overall similarity. The framework is used to differentiate the functional connectome in schizophrenia.
9	Stephen Gliske	University of Michigan, Ann Arbor	Identification of the seizure onset zone using big data analysis of High Frequency Oscillations	
10	Vincent Koppelmans	University of Michigan, Ann Arbor	Regional cerebellar volumetric correlates of manual motor and cognitive function	Cerebellar volume declines with advancing age. However, only a few studies have investigated age differences in regional cerebellar volume (RCV) and their association with sensorimotor and cognitive function. In a sample of 213 healthy older adults we investigated the association of RCV with age, motor skills, and cognition. Volume of two cerebral regions was obtained for comparison of effect sizes. RCVs were derived from T1-weighted MRI scans using an automated segmentation method called SUIT and clustered using principal component analysis. We derived RCV and brain volumes using SUIT software combined with advanced normalization tools (ANts) and FreeSurfer respectively. Both ANTs and FreeSurfer are computationlly heavy programs that can take many hours to run per dataset. For this, we used the University of Michigan Flux high performance computing cluster. Motor and cognitive outcome measures were clustered into 2 motor compound scores ("Verbal memory and mental flexibility", and "Mental rotation and inhibitory control"). We found some evidence that some clusters of the cerebellum are more involved in motor performance (e.g., Curs I and lobule I-IV) whereas others seem to be more involved in cognitive functioning (Lobule VIIIb + IX). Small to moderate effect sizes of the here reported brain-behavior associations suggest that RCV is important in sensorimotor and cognitive performance, and that these associations are not mainly mediated by volume of cortical regions, considering similar effect sizes. These results provide new insights into cerebellar contributions to behavior in healthy older adults.
11	Syed Husain	SOCR/DCM&B, University of Michigan	DViewer: A web- based toolkit for dynamic visualization and analysis of neuroimaging datasets	
12	Arthur Gerhson	Case Western Reserve University	Cloudwave Signal Format: An Open Semantic Data Format for Electrophysiological Signal Data	
13	Eunjee Lee	University of Michigan	Bayesian Hierarchical Group Spectral Clustering for Brain Functional Connectivity	to examine if the functional connectivity is disrupted in subjects with brain disorders. Our method decomposes the functional connectivity matrices into an underlying relational structure among brain areas and subject-specific network in a low-dimensional space. An additional layer is added in our model to incorporate effects of other covariates, which enables to test the group difference of functional connectivity. We take a Bayesian approach to estimate parameters in our model. Our real data analysis revealed that bilateral precuneus had weaker connection between right posterior cingulate gyrus and left angular gyrus for Alzheimer's disease patients than mild cognitive impairment (MCI) patients. There was connectivity difference of paracentral gyrus with other brain regions including superior, middle, inferior frontal gyri.

Shareable Resources

A <u>web-form</u> (<u>https://goo.gl/okbqF1</u>) was used to gather and aggregate items for inclusion in the ACNN sharable resources. Examples (not an exclusive list) of appropriate resources that may be suggested include:

- Highly scalable APIs
- Relevant publications
- o Cloud-services
- Computational Resources
- o Algorithms, methods, techniques
- Education and Training Opportunities

The real-time summary of the results and a tabular representation of previously submitted resource meta-data.

Trainee/Fellow Scholarship Application

43 travel/accommodation scholarships were awarded to Students, Postdocs, Fellows, and other Trainees to sponsor their travel and local accommodation. Awards were made base on merit, first-come-first-serve.

Trainee Scholar	Affiliation	Type (undergrad, grad, postdoc, fellow, young investigator)
Seungyoung Hwang	Johns Hopkins University	Grad
Jingyang Zhou	New York University	Grad
Malika Datta	Columbia University	Grad
Uttara Tipnis	Purdue University	Grad
Alexander Gates	Indiana University	Grad
Asish Banik	Michigan State University	Grad
Vineet Raghu	University of Pittsburgh	Grad
Kathryn Alpert	Northwestern University	Grad
Wasiur Rahman	The Ohio State University	Grad
Shashank Gugnani	The Ohio State University	Grad
Chunyu Song	Washington University in St. Louis	Grad
Elizabeth Fox	Wright State University	Grad
Vibha Viswanathan	Purdue University	Grad
Scott Lewis	University of Missouri - St. Louis, Hughes Lab	Grad
Charlie Vollmer	Colorado State University	Grad
Rejaul Karim	Michigan State University	Grad
Yiying Liu	Case Western Reserve University	Grad
Bradley Caron	Indiana University	Grad
Brent McPherson	Indiana University	Grad
Daniel Bullock	Indiana University	Grad

Dipti Shankar	The Ohio State University	Grad
Elise Jing	Indiana University	Grad
Josh Faskowitz	Indiana University	Grad
Joshua Valdez	Case Western Reserve University	Grad
Kamalaldin Kamalaldin	Kalamazoo College	Grad
Kefei Liu	Indiana University School of Medicine	Grad
Nusrat Islam	The Ohio State University	Grad
Arthur Gershon	Case Western Reserve University	Post-Doc
Michael Moore	Michigan State University	Post-Doc
Sandra Smieszek	Case Western Reserve University	Post-Doc
Shuai Chen	Washington University in St. Louis	Post-Doc
Mahdi Moqri	University of Florida	Young Investigator
John Flavin	Washington University, NRG (Dan Marcus)	Young Investigator
David Johnson	Manchester University	Young Investigator
John West	Indiana University Center for Neuroimaging	Young Investigator
Li Shen	Indiana University	Young Investigator
Brad Sutton	University of Illinois at Urbana-Champaign	Young Investigator
Eleftherios Garyfallidis	Indiana University	Young Investigator
Xiaowei Song	Northwestern University	Young Investigator
Xiaoran Yan	Indiana University	Young Investigator
Jonathan Dudley	Cincinnati Children's Hospital Medical Center	Young Investigator
Jonathan Winstone	Washington University in St. Louis	Young Investigator
Arvind Gopu	Indiana University - Pervasive Technology Institute	Young Investigator

Partner Participation

A number of non-academic partners contributed to the blend of multi-institutional participants enriching the event and providing a balanced view of the challenges, gaps, resources, and opportunities in the field of computational neuroscience. Examples of these include

Affiliation	Partners
Department of Defense/VA Interagency Program Office	John Burke, Julie White, Mike Ross, Gaurav Seth
Health IT	Stephen Konya, Andrew Drew, Russell Davis
National Science Foundation	Kenneth Whang, Fan Zhao
Arbor Research Collaborative for Health	Lisa Henn
China Data Center	Juanle Wang
Flywheel	Gunnar Schaefer
Level X Talent	Michael Conlin
Spark	Chris Roszell

Academic Participants	Number of Participants
Case Western Reserve University	5 attended
Cincinnati Children's Hospital Medical Center	1 attended
Colorado State University	1 attended
Columbia University	1 attended
Eastern Michigan University	1 registered, 0 attended
Indiana University	16 attended
Johns Hopkins University	1 attended
Kalamazoo College	1 attended
Manchester University	1 attended
Michigan State University	9 registered, 8 attended
New York University	1 attended
Northwestern University	4 attended
Oakland University	3 registered, 2 attended
Purdue University	3 registered, 2 attended
The Ohio State University	8 attended
University of California	1 attended
University of Florida	3 registered, 1 attended
University of Illinois	1 attended
University of Michigan	48 registered, 26 attended
University of Missouri	1 attended
University of Pittsburgh	1 attended
Washington University	5 attended
Weill Cornell Medical College	1 registered, 0 attended
Wright State University	2 attended

Sponsors

The National Science Foundation, http://www.nsf.gov/news/news_summ.jsp?cntn_id=136784

Midwest Big Data Hub, http://MidwestBigDataHub.org

Midwest Big Data Hub

The Michigan Institute for Data Science (MIDAS), http://midas.umich.edu

The Indiana Imaging Research Facility (IRF), https://www.indiana.edu/~irf/home

OSU Network Based Computing, http://nowlab.cse.ohio-state.edu

CWRU Biomedical and Healthcare Informatics, https://goo.gl/l19s07

Michigan Nutrition Obesity Research Center (MNORC) http://mmoc.med.umich.edu

Post-conference Evaluation

At the conclusion of the workshop, all attendees were asked to anonymously complete a workshop evaluation survey which was submitted electronically as a web-form (<u>http://goo.gl/forms/qSI6PGiN4PfTs6Fg1</u>). The aggregate results of this evaluation will be used to improve, enhance and expand future ACNN training events, activities and bootcamps.

As of September 22, 2016, the results of the survey (<u>https://docs.google.com/a/umich.edu/forms/d/e/1FAIpQLSflpWyA5uzs1DoUWiNw6rUzC1MpEZzGr2uz-UCUi4hmoyhoyQ/viewanalytics?usp=form_confirm</u>) are summarized below:

Demographics

Describe your background, expertise and interests in Big Neuroscience Data and Predictive Analytics ComputationalComputational neuroscientist Medical image computing, bioinformatics Computer Scientist with master's master's degrees in Computer Science and Bioinformatics, interested in multidisciplinary science, web portals, usability, big data management and processing. We are collaborating with Dr. Franco Pestilli in prototyping a web portal based system that allows archival of datasets and application environments (VMs, Docker containers, etc.) including code tied to publications. Predictive P analytics and computational neuroimaging

What is your job role?

Undergraduate student	1	
Graduate/professional student	0	
Post doctoral researcher	0	
Scholar/Fellow	0	
Faculty	3	
Developer	0	
Researcher/Scientist	0	
Administrator	0	
Government official	0	
Industry partner	0	
Other	1	
Undergraduate student	1	20%
Graduate/professional student	0	0%
Post doctoral researcher	0	0%
Scholar/Fellow	0	0%
Faculty	3	60%
Developer	0	0%
Researcher/Scientist	0	0%
Administrator	0	0%
Government official	0	0%
Industry partner	0	0%
Other	1	20%

How did you hear about this event?

Question	С	ount
Internet search	1	
Friend / Colleague	4	
Emailed invitation	1	
Another website	0	
Our website	0	
Other	0	
Internet search	1	20 %
Friend / Colleague	4	80 %
Emailed invitation	1	20 %
Another website	0	0%
Our website	0	0%
Other	0	0%

What attracted you to participate in the ACNN Workshop?

I am co-PI on the ACNN grant

Workshop theme aligns with my research interests very well.

Our collaborator Dr. Franco Pestilli suggested we attend the workshop.

Transdisciplinary open-science opportunities in computational neuroscience research and application.

Feedback

Overall, how would you rate the event? [Overall]

Question Count

- 1 0 0% 2 0 0% 3 0 0%
- 4 1 20%
- 5 4 80%

How helpful was the content presented at the event? [Overall]

Question Count

How engaging were the speakers at the event? [Overall]

Question Count

- 1 0 0% 2 0 0% 3 0 0%
- 4 1 20%

5 4 80%

How likely is it that you would recommend the event to a colleague? [General]

- Question Count 1 0 0%
- 200%
- 300%
- 4 1 20%
- 5 4 80%

How likely are you to attend a similar event again in the future? [General]

Question Count

- 1 0 0%
- 200%
- 300%
- 4 1 20%
- 5480%

Accommodation [Logistics]

Question Count

- 1 0 0%
- 2 0 0% 3 0 0%
- 4 1 20%
- 5 4 80%

Welcome kit [Logistics]

Question Count

- 1 0 0% 2 0 0% 3 0 0% 4 1 20% 5 4 80%
- Communication emails [Logistics]

Question Count

Transportation [Logistics]

Question Count

Welcome activity [Logistics]

Question Count

- 1 0 0% 2 0 0% 3 1 20%
- 4 0 0%
- 5480%

Venue [Logistics]

Question Count

1	0	0%
2	0	0%
3	0	0%
4	0	0%
5	5	100
5	5	%

Activities [Logistics]

Question Count

Closing ceremony [Logistics]

Question Count

- 100%
- 200%
- 3 2 40%
- 4 0 0%
- 5 3 60%

Workshop facilities were satisfactory [Workshop Arrangements]

Question Count

- 100%
- 200%
- 300%
- 4 1 20%
- 5480%

Workshop facilitators were effective in communicating ideas and issues [Workshop Arrangements]

- **Question Count**
- 100%
- 200%
- 300%
- 4 1 20%
- 5 4 80%

Workshop facilitators were effective in organizing sessions so that I was actively involved [Workshop Arrangements]

Question Count

- 100%
- 200%
- 300%
- 4 1 20%
- 5 4 80%

A collaborative and helpful tone was established during the session [Workshop Arrangements] Question Count

- 1 0 0% 2 0 0% 3 0 0% 4 1 20%
- 5 4 80%

Overall workshop logistics were well-planned and organized [Workshop Arrangements]

Question Count

- 100%
- 200%
- 300%
- 4 1 20%
- 5 4 80%

Learn Big Data Advances, Challenges and Opportunities [Workshop Outcomes]

Question Count

- 1 0 0%
- 200%
- 300%
- 4 1 20%
- 5 4 80%

Learn strategies for efficient Big Data management [Workshop Outcomes]

Question Count

- 1 0 0%
- 200%
- 3 1 20%
- 4 0 0%
- 5 4 80%

Learn the practice of Big Data Analytics [Workshop Outcomes]

Question Count

- 1 0 0%
- 200%
- 3 1 20%
- 400%
- 5 4 80%

Learn about computational Neuroscience applications of Big Data [Workshop Outcomes]

Question Count

1 0 0%

Question Count

200% 300% 4 1 20% 5 4 80%

Professional networking [Workshop Outcomes]

Question Count

1	0	0%
2	0	0%
3	0	0%
4	0	0%
5	5	100 %

Sessions allowed for interactive exchanges [Workshop Sessions]

Question Count

- 100%
- 200%
- 300%
- 4 1 20%
- 5 4 80%

Usefulness of the presented data, resources, tools and services [Workshop Sessions]

Question Count

- 100%
- 200%
- 300%
- 4 1 20%
- 5 4 80%

Sessions were structured and organized well [Workshop Sessions]

Question Count

- 100%
- 200%
- 300%
- 4 1 20%
- 5 4 80%

Welcome activity [Which sessions did you find most relevant?]

Question Count

- Not relevant 0 2
- Relevant
- Very relevant 2
- Did not attend 1
- Not relevant 00%
- 2 <mark>%</mark> Relevant

Question Count

Very relevant $2\frac{40}{\%}$ Did not attend 1 $\frac{20}{\%}$

Speaker #1 [Which sessions did you find most relevant?]

Question Count

- Not relevant 0 Relevant 2
- Very relevant 2
- Did not attend 1
- Not relevant 00%
- 2 <mark>40</mark> % Relevant
- Very relevant $2\frac{40}{\%}$
- Did not attend 1 $\frac{20}{\%}$

Activity #1 [Which sessions did you find most relevant?]

Question Count Not relevant 0 Relevant 2 Very relevant 2 Did not attend 1 Not relevant 00% 2 <mark>%</mark> Relevant Very relevant $2\frac{40}{\%}$ Did not attend 1 $\frac{20}{\%}$

Speaker #2 [Which sessions did you find most relevant?]

	Question	Count
	Not relevant	0
	Relevant	2
	Very relevant	2
	Did not attend	1
	Not relevant	0 0%
	Relevant	2 <mark>40</mark> %
	Very relevant	2 <mark>40</mark> %
	Did not attend	1 <mark>20</mark> 1 %
Activity #2 [Which sessions did you find	most relevant [*]	?]
	Question	Count
	Not relevant	0

	Question	Count
	Relevant	2
	Very relevant	2
	Did not attend	1
	Not relevant	0 0%
	Relevant	2 <mark>40</mark> %
	Very relevant	2 <mark>40</mark> %
	Did not attend	1 <mark>20</mark> %
Closing activity [Which sessions did you	find most rele	vant?]

QuestionCountNot relevant0Relevant2Very relevant2Did not attend3Not relevant0Relevant0Very relevant2 $\frac{40}{\%}$ Did not attend3

List a couple of BIG IDEAS about Big Neuroscience Data that came to you during this workshop? Collaborate with Flywheel and similar groups if possible.

Form working groups on specific topics (e.g., connectomics, TBI, training, etc.)

Notes

Below are some notes from the workshop that may suggest specific follow up actions and activities:

- Aggregate meta-data about (open) computational neuroscience resources of interest to ACNN community
- Develop an **ACNN Resourceome Navigator** allowing the community to search, traverse and explore available resources, identify potential interoperability and integration points, and build meta-resources based on disparate infrastructure, available datasets, open-source software, web-services, etc.
- Design the ACNN website to allow portal search, reviews, collaboration and interaction on CDE, provenance, workflows, projects, etc.
- · Presenters to post their demos/presentations/etc. on workshop website
- Promote formation of Working Groups (WGs)
- FAIR principles for advancing open-science (findable, accessible, interoperable, reusable)
- May need better management of unconference presenters (include coaching for junior investigators)
- Plan meetings much more in advance (2017 Indiana/Bloomington, 2018, OSU/Columbus, 2019 TBD)
- Develop training and education materials to provide a springboard for undergrads, grads, transdisciplinary scholars to get involved and advance in the field of computational neuroscience
- Develop/propose pilot collaborative projects among subsets of the key ACNN institutions
- Other ...

Participants

List of Workshop presenters and participants.

Name	Affiliation	Contact (URL/Email/	Phone)
lvo Dinov	University of Michigan	http://www.umich.edu/~o	dinov
Rich Gonzalez	University of Michigan	http://www.rcgd.isr.umich.edu/people/gonzalez.html	
Franco Pestilli	Indiana University	http://psych.indiana.edu/faculty/franpest.php	
Olaf Sporns	Indiana University	http://psych.indiana.edu/faculty/osporns.php	
Andrew Saykin	Indiana University	http://goo.gl/ycQuk2	
Khaled Hamidouche	Ohio State University	https://web.cse.ohio-stat	te.edu/~hamidouc
Xiaoyi Lu	Ohio State University	http://web.cse.ohio-state	e.edu/~luxi
Hari Subramoni	Ohio State University	http://web.cse.ohio-state	e.edu/~subramon
Satya Sahoo	CWRU	https://goo.gl/dfa6wZ	
Daniel Marcus	Washington University	https://goo.gl/9cH9Na	
Lei Wang	Northwestern U	http://www.nuin.northwe	stern.edu/members-2/lwang
Name	Affiliation	Professional URL	Email Address
Alexander Gates	Indiana University	http://pages.iu.edu/~a jgates/	ajgates@indiana.edu
Alexandr Kalinin	University of Michigan	,0	akalinin@umich.edu
Amy Pienta	University of Michigan		apienta@umich.edu
Anca Stefan	Arbor Research Collaborative for Health		anca.stefan@arborresearch.org
Anis Davoudi	University of Florida		anisdavoudi@ufl.edu
Arthur Gershon	Case Western Reserve University		arthur.gershon@case.edu
Arvind Gopu	Indiana University - Pervasive Technology Institute		agopu@iu.edu
Asish Banik	Michigan State University		banikasi@stt.msu.edu
Bennet Fauber	University of Michigan		bennet@umich.edu
Bharat Panwar	University of Michigan	http://guanlab.ccmb. med.umich.edu/	bharatpa@umich.edu
Brad Sutton	University of Illinois at Urbana-Champaign		bsutton@illinois.edu
Bradley Caron	Indiana University		bacaron@imail.iu.edu
Brian Athey	University of Michigan		bleu@med.umich.edu
Brooks Gross	University of Michigan		bagross@med.umich.edu
Chao Gao	University of Michigan		gchao@umich.edu
Charlie Vollmer	Colorado State University	www.stat.colostate.e du/~vollmer	charlesv@rams.colostate.edu
Chris Roszell	Michigan		mcroszel@umich.edu
Chunqi Qian	Michigan State University		qianchu1@msu.edu
Chunyu Song	Washington University in St. Louis		songchunyu@wustl.edu
Cindy Lustig	University of Michigan		clustig@umich.edu
Daniel Bullock	Indiana University		iisdanbul@gmail.com
David Johnson	Manchester University	<u>www.davidcharlesjoh</u> <u>nson.com</u>	davejohnson7@mac.com
Edward Bartlett	Purdue University		ebartle@purdue.edu
Eleftherios Garyfallidis	Indiana University	http://eleftherios.net	elef@indiana.edu
Elise Jing	Indiana University		jingy@indiana.edu

Name	Affiliation	Professional URL	Email Address
Elizabeth Fox	Wright State University	http://psych- scholar.wright.edu/co gntivemodelinggroup/	fox.119@wright.edu
Eunjee Lee	University of Michigan		eunjee@umich.edu
Fred Shen	University of Michigan		Fshen@umich.edu
Gang Liu	Arbor Research Collaborative for Health		gang.liu@arborresearch.org
Gunnar Schaefer	Flywheel		gsfr@flywheel.io
Gustavo Patino	Oakland University, William Beaumont School of Medicine		patino@oakland.edu
Ivy Tso	University of Michigan		ivytso@umich.edu
Jason Parker	Wright State University		jason.parker@wright.edu
Jeffrey Grethe	University of California, San Diego		jgrethe@ucsd.edu
Jessica Cote	University of Michigan		cotejl@umich.edu
Jessica Lee	University of Michigan		jessqlee@umich.edu
Jiaxing Wu	University of Michigan		jxwu@umich.edu
Jingyang Zhou	New York University		jyz205@nyu.edu
JINKA TUIASI	University of Michigan		tjinka@umicn.edu
	University		spedrubaker@gmail.com
John Burke	DoD, Department Veterans Affairs		john.burke@va.gov
John Marcotte	University of Michigan	http://www- personal.umich.edu/~ jemarcot/	jemarcot@umich.edu
John West	Indiana University Center for Neuroimaging		jdwest@iupui.edu
Jonathan Dudley	Cincinnati Children's Hospital Medical Center		jonathan.dudley@cchmc.org
Josh Faskowitz	Indiana University	https://scholar.google .com/citations?user= GE4rM3QAAAAJ&hl= en	jfaskowi@iu.edu
Julie White	DoD/VA Interagency Program Office - Innovation Group (Booz Allen Hamilton contractor support)		white_julie@bah.com
Kaitlin Cassady	University of Michigan		kcass@umich.edu
Kamalaldin Kamalaldin	Kalamazoo College	linkedin.com/in/kkam alaldin	kamal.aldin.94@gmail.com
Karen Nielsen	University of Michigan	<u>sites.lsa.umich.edu/k</u> arenen	karenen@umich.edu
Kathryn Alpert	Northwestern University	http://niacal.northwes tern.edu/	k-alpert@northwestern.edu
Kefei Liu	Indiana University School of Medicine		kefliu@iu.edu
Kenneth Whang	National Science Foundation		kwhang@nsf.gov
Fan Zhao	National Science Foundation		fzhao@nsf.gov
Krisanne Litinas	University of Michigan		klitinas@umich.edu
Lisa Henn	Arbor Research Collaborative for Health		lisa.henn@arborresearch.org
Mahdi Moqri	University of Florida	www.moqri.com	moqri@ufl.edu

Name	Affiliation	Professional URL	Email Address
Malika Datta	Columbia University		msd2185@cumc.columbia.edu
Maria Arredondo	University of Michigan	https://www.research gate.net/profile/Maria _Arredondo2	mmarre@umich.edu
Mark Reimers	Michigan State University		reimersm@msu.edu
Megan Hagenauer	University of Michigan		hagenaue@umich.edu
Megan Parsons	University of Michigan		meganparsons@alumni.harvard.ed u
Michael Moore	Michigan State University		michael.moore123@gmail.com
Mike Ross	DoD/VA Interagency Program Office (IPO)		michael.h.ross38.ctr@mail.mil
Ming Tang	University of Michigan		mingtang@umich.edu
Ming Yan	Michigan State University		yanm@math.msu.edu
Reihaneh Hosseinzadeh Hariri	Oakland University	Public Profilehttps://www.lin kedin.com/in/reihane hhariri	rhosseinzadehha@oakland.edu
Rejaul Karim	Michigan State University		<u>karimrej@stt.msu.edu</u>
Richard Gonzalez	University of Michigan		gonzo@umich.edu
Sandra Smieszek,	Case Western Reserve University		sps92@case.edu
Sara Aton	University of Michigan		saton@umich.edu
Scott Lewis	University of Missouri - St. Louis, Hughes Lab		slhv7@mail.umsl.edu
Scott McCaulay	Indiana University		smccaula@indiana.edu
Seungyoung Hwang	Johns Hopkins University		shwang25@jhu.edu
Sharan Kalwani	Michigan State University		sharan.kalwani@gmail.com
Shervin Assari	University of Michigan		assari@umich.edu
Shuai Chen	Washington University in St. Louis	https://www.research gate.net/profile/Shuai _Chen18	schen@radonc.wustl.edu
Sijin Ren	University of Michigan		sijinren@umich.edu
Simon Evans	University of Michigan		evanssi@umich.edu
Soichi Hayashi	Indiana University		hayashis@lu.edu
Stephen Gliske	University of Michigan		sgliske@umich.edu
Uttara Tipnis	Purdue University		utipnis@purdue.edu
Valentin Pentchev	Indiana University	nttp://luni.lu.edu	vpentcne@lu.edu
		vibhaviswanathan	
Vincent Koppelmans	University of Michigan	http://www.kines.umic h.edu/directory/facult y/vincent-koppelmans	vkoppel@umich.edu
Vineet Raghu	University of Pittsburgh	N/A	vkr8@pitt.edu
Vivek Kumar	University of Michigan		vkmbni@umich.edu
William Stacey	University of Michigan		william.stacey@umich.edu
Xiaoran Yan	Indiana University	https://xiaoranyan.wo rdpress.com/	yan30@iu.edu
XIAOSU (Frank) HU	University of Michigan	http://chgd.umich.edu /people/details/xiaosu -hu-ph-d/	xiaosuhu@umich.edu

Name	Affiliation	Professional URL	Email Address
Xiaowei Song	Northwestern University	http://neuroimaging.n orthwestern.edu/rese arch-team-3/xiaowei- song/	xiaowei.song@northwestern.edu
Yiying Liu	Case Western Reserve University		yxl1023@case.edu
Yize	Weill Cornell Medical College		yiz2013@med.cornell.edu
Yongwen Zhuang	University of Michigan		zyongwen@umich.edu
Yuying Xie	Michigan State University		xyy@stt.msu.edu
Zhaoxian Hu	University of Michigan		huzhx@med.umich.edu
Zuleirys Santana- Rodriguez	University of Michigan		zuleirys@umich.edu

Event Photos

A collage of photos from the 2016 ACNN Big Neuroscience Data Workshop

Advanced Computational Neuroscience Network (ACNN)

Midwest Workshop on Big Neuroscience Data, Tools, Protocols & Services

~	~
)	y
~	-