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Characteristics of Big Biomed Data

IBM Big Data 4V'’s: Volume, Variety, Velocity & Veracity

BD
Dimensions

Size

Complexity

Incongruency

Multi-source

Multi-scale

Incomplete

Tools

Harvesting and management of vast amounts of
data

Wranglers for dealing with heterogeneous data

Tools for data harmonization and aggregation

Transfer and joint modeling of disparate
elements

Macro to meso to micro scale observations

Reliable management of missing data

Dinov, et al. (2014)

Example: analyzing observational data of
1,000’s Parkinson’s disease patients
based on 10,000’s signature biomarkers
derived from multi-source imaging,
genetics, clinical, physiologic, phenomics
and demographic data elements.

Software developments, student
training, service platforms and
methodological advances associated
with the Big Data Discovery Science all
present existing opportunities for
learners, educators, researchers,
practitioners and policy makers
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Processed Data Maps, Models

Data Aggregation
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Data Fusion Causal Inference Treatment Regimens

Summary Stats Networks, Analytics Forecasts, Predictions

Semantic-Mapping Derived Biomarkers

Linkages, Associations Healthcare Outcomes
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Predictive Big Data Analytics in Parkinson’s Disease

LA unique archive of Big Data: Parkinson’s Progression Markers Initiative (PPMI). Defining
data characteristics — large size, incongruency, incompleteness, complexity, multiplicity of
scales, and heterogeneity of information-generating sources (imaging, genetics, clinical,
demographic)

Approach

 introduce methods for rebalancing imbalanced cohorts,
« utilize a wide spectrum of classification methods to generate phenotypic predictions,
* reproducible machine-learning based classification

Results of machine-learning based classification show significant power to predict
Parkinson’s disease in the PPMI subjects (consistent accuracy, sensitivity, and specificity
exceeding 96%, confirmed using internal statistical 5-fold cross-validation). Clinical (e.g.,
Unified Parkinson's Disease Rating Scale (UPDRS) scores), demographic (e.g., age), genetics
(e.g., rs34637584, chr12), and derived neuroimaging biomarker (e.g., cerebellum shape
index) data all contributed to the predictive analytics and diagnostic forecasting.

JModel-free Big Data machine learning-based classification methods (e.g., adaptive
boosting, support vector machines) outperform model-based techniques (GEE, GLM,
MEM) in terms of predictive precision and reliability (e.g., forecasting patient diagnosis).
UPDRS scores play a critical role in predicting diagnosis, which is expected based on the
clinical definition of Parkinson’s disease. Even without longitudinal UPDRS data, howeuver,
the accuracy of model-free machine learning based classification is over 80%. The
methods, software and protocols developed here are openly shared and can be employed
to study other neurodegenerative disorders (e.g., Alzheimer’s, Huntington’s). pinoy, etal. rLos, 2016
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Data Strata
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Best Machine Learning Based Classification Results
(according to average measures of 5-fold cross-validation)
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0.6
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0.99632
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0.98529
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0.96599

Sensi-
tivity

0.99414

0.99414
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0.98242
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ficity
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positive
predictiv
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0.998039
0.975096
0.967557
0.986275
0.992

0.952

negative

predictive

value
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log odds
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(LOR)

11.4882

8.902166
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8.4214

9.039789 @

6.516987




S 1an S socm s

SOCR Analytics Dashboard

SOCR Big Data Dashboard

of Visie Laber Force

LWeb-service combining and integrating multi-
source socioeconomic and medical datasets

L Big data analytic processing
linterface for exploratory navigation,
manipulation and visualization

L Adding/removing of visual queries and
interactive exploration of multivariate
associations

Color. Medicats Bacmfesaiios Fer Biivider

L Powerful HTMLS5 technology enabling mobile
on-demand computing

Husain, et al., 2015, J Big Data
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SOCR Dashboard (Exploratory Big Data Analytics): Associations
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Compressive Big Data Analytics (CBDA)

O The foundation for Compressive Big Data Analytics (CBDA)
involves
O Iteratively generating random (sub)samples from the Big Data collection.

O Then, using classical techniques to obtain model-based or non-
parametric inference based on the sample.

O Next, compute likelihood estimates (e.g., probability values quantifying
effects, relations, sizes)

O Repeat — the process continues iteratively.

O Repeating the (re)sampling and inference steps many times (with
or without using the results of previous iterations as priors for
subsequent steps).

Dinov, J Med Stat & Info, 2016



Big Data Analytics — Compressive Sensing

O Define the nested sets
S = {x: lxllo = [supp(x)| < k},
where the data x, as a vector or tensor, has at most k non-trivial elements. Note that if
X,Z € S, then x +z € S, 2 S

OlfD,uy = (g01 y P2 ,P3 ..y <pn) represents an orthonormal basis, the data
may be expressed as x = ®c, where ¢; = (x, @; ), i.e.,, c = ®'x, and ||c||, <
k. Even if x is not strictly sparse, its representation ¢ may be sparse. For each
dataset, we can assess and quantify the error of approximating x by an
optimal estimate X € S, by computing

o (X)p= m1n||x =5



Big Data Analytics — Compressive Sensing

O In compressive sensing, if x € R"™, and we have a data stream generating m

linear measurements, we can represent y = Ax, where A« is a

dimensionality reducing matrix (m < n), i.e.,

O The null space of A4,

Apsn: R*SR™

N(A) ={ze€e R™: Az =0¢€ R™}. A

uniquely represents all x € S, & N(A) contains no
vectors in S,.

O The spark of a matrix A represents the smallest number of columns of A that

Data Elements: j index

are linearly dependent. If 4,,,«, is a random matrix whose entries are
independent and identically distributed, then spark(A) = m + 1, with

probability 1.




Big Data Analytics — Compressive Sensing

O If the entries of 4 are chosen according to a sub-Gaussian
distribution, then with high probability, for each k, there exists
d,1 € (0,1) such that

(1 = &)llxll3 < llAx|lZ < (1 + Sz llxll7 (1)
forall x € S5, (RIP=Restricted isometry property)

0 When we know that the original signal is sparse, to reconstruct x
given the observed measurements y, we can solve the
optimization problem:

£ =arg_min |lzll



Big Data Analytics — Compressive Sensing

Linear programming may be used to solve the optimization problem if we replace the
zero-norm by its more tractable convex approximation, the [;-norm, X =
arg min ||z||;

Z:Az=y

Given that 4,,,5,, has the above property and 8, < V2 — 1, if we observe y = Ax,
then the solution X satisfies

12 = xll, < €222
Thus, in compressive sensing applications, if x € S;, and A satisfies the RIP, condition
(1), we can recover any k-sparse signal x exactly (as g3, (x); = 0) using only

0(klog(n/k)) observations, sincem = 0 (k log("/k))

2
82k

Finally, if A,;,« is random (e.g., chosen according to a Gaussian distribution) and
D,y is an orthonormal basis, then A, X @« Will also have a Gaussian
distribution, and if m is large, A" = A X ® will also satisfy the RIP condition (1) with
high probability.
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Compressive Big Data Analytics (CBDA)

O The foundation for Compressive Big Data Analytics (CBDA) involves
O lIteratively generating random (sub)samples from the Big Data collection.

O Then, using classical techniques to obtain model-based or non-
parametric inference based on the sample.

0 Next, compute likelihood estimates (e.g., probability values quantifying
effects, relations, sizes)

O Repeat —the process continues iteratively.

O Repeating the (re)sampling and inference steps many times (with
or without using the results of previous iterations as priors for
SUbsequent StepS) Dinov, J Med Stat & Info, 2016



Compressive Big Data Analytics (CBDA)

O Bootstrapping techniques may be employed to quantify joint
probabilities, estimate likelihoods, predict associations, identify
trends, forecast future outcomes, or assess accuracy of findings.

O The goals of compressive sensing and compressive big data
analytics are different.

O CS aims to obtain a stochastic estimate of a complete dataset using
sparsely sampled incomplete observations.

O CBDA attempts to obtain a quantitative joint inference characterizing
likelihoods, tendencies, prognoses, or relationships.

O However, a common objective of both problem formulations is the
optimality (e.g., reliability, consistency) of their corresponding estimates.



Compressive Big Data Analytics (CBDA)

0 Suppose we represent (observed) Big Data as a large matrix Y € R™*¢, where
n= sample size (instances) and t = elements (e.g., time, space,
measurements, etc.)

To formulate the problem in an analytical framework, let’s assume L €

R™* 1 is a low rank matrix representing the mean or background data
features, D € R™*™ is a (known or unknown) design or dictionary matrix,

S € R™*t js a sparce parameter matrix with small support (supp(S) < m X
t), E € R™*t denote the model error term, and A, (.) be a sampling
operator generating incomplete data over the indexing pairs of instances and
data elements 2 € {1,2,...,n} x{1,2, ..., t}

In this generalized model setting, the problem formulation involves
estimation of L, S (and D, if it is unknown), according to this model
representation: NAg(Y)=Ao(L+DS+E) (2)




Compressive Big Data Analytics (CBDA)

O Having quick, reliable and efficient estimates of L, S and D would allow us
to make inference, compute likelihoods (e.g., p-values), predict trends,
forecast outcomes, and adapt the model to obtain revised inference using
new data

O When D is known, the model in equation (2) is jointly convex for L and S,
and there exist iterative solvers based on sub-gradient recursion (e.g.,
alternating direction method of multipliers)

O However, in practice, the size of Big Datasets presents significant
computational problems, related to slow algorithm convergence, for
estimating these components that are critical for the final study inference



Compressive Big Data Analytics (CBDA)

O One strategy for tackling this optimization problem is to use a random
Gaussian sub-sampling matrix 4,,,«,, (much like in the compressive
sensing protocol) to reduce the rank of the observed data (Y,,,«;, where
(m,l) € 1) and then solve the minimization using least squares

O This partitioning of the difficult general problem into smaller chunks has
several advantages. It reduces the hardware and computational burden,
enables algorithmic parallelization of the global solution, and ensures
feasibility of the analytical results

O Because of the stochastic nature of the index sampling, this approach
may have desirable analytical properties like predictable asymptotic
behavior, limited error bounds, estimates’ optimality and consistency
characteristics






Compressive Big Data Analytics (CBDA)

O One can design an algorithm that searches and keeps only the
most informative data elements by requiring that the derived
estimates represent optimal approximations to y within a specific
sampling index subspace {(m, )} € 12

0 We want to investigate if CBDA inference estimates can be shown
to obey error bounds similar to the upper bound results of point
imbedding’s in high-dimensions (e.g., Johnson-Lindenstrauss
lemma) or the restricted isometry property



Compressive Big Data Analytics (CBDA)

O The Johnson-Lindenstrauss lemma guarantees that for any 0<e<, aset
of points {P, }X € R™ can be linearly embedded (LIJ: R”—)R”') into

{(W(p,) =P/} € R™ forvVn' >4 ( LS )> almost preserving their pairwise

2 3

distances, i.e., (1—¢€)||P; — P]”i <||p' - Pf”; <(1+6e)|P - PJ”z

O The restricted isometry property ensures that if §,;, < V2 — 1 and the estimate
X = arg Z;Tzil:lynzlll’ where A,,, ., satisfies property (1), then the data

a5}
Vk

O Can we develop iterative space-partitioning CBDA algorithms that either
converge to a fix point or generate estimates that are close to their
corresponding inferential parameters?

reconstruction is reasonable, i.e., ||X — x]||, < C,
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