
 Performance of map and reduce tasks are modeled from execution times of each phase in these tasks. For 

example, execution time for a single Reduce task can be modeled as 

 For RDMA-based MR, execution time can be re-modeled [2] 
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Design features for RDMA 

 Prefetch/Caching of MOF 

 In-Memory Merge 

 Overlap of Merge & Reduce 

 MapReduce is the de-facto parallel programming model for big data processing 

 Open-source implementations from Apache (Hadoop, Spark, Tez) are the most popular frameworks 

because of proven scalability and fault-tolerance 

 Java sockets based communication 

model for bulk data transfer in shuffle 

 Costly frequent disk operations in 

the job execution workflow 

 Cannot take advantage of global 

file systems because of shared-nothing 

based architecture 

 For large scale data processing, HOMR achieves significant performance benefits compared to default 

Hadoop MapReduce; leverages benefit from modern HPC resources (RDMA and Lustre) 

 Future plan is to design advanced DAG execution framework (e.g. Tez) with modern HPC resources 
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 HOMR [3] (Hybrid Overlapping in 

MapReduce) is designed to have maximum 

possible overlapping across all phases of 

MapReduce  

 HOMR also ensures faster job 

execution over other high performance 

interconnects (10GigE, IPoIB) because of 

its new shuffle algorithms; provides the 

fastest execution over RDMA  

 HOMR assigns weights to different maps to signify how much data to shuffle on each request; this 

assignment can be greedy / all-average  

 Initial static weight assignment is updated by on-demand adjustment which makes each shuffle to bring 

only the map outputs needed; Intelligent shuffling provides faster job execution pipeline 

 

  MRoIB [1] introduces RDMA-based shuffle, replacing the 

slower HTTP-based request response messages 

  MOFs are divided into small packets and are shuffled instead 

of shuffling the entire data at once as in default framework 

 No on-disk merge. Initially, small packets of data are required 

to create the Priority Queue (PQ); subsequent packets are inserted 

in this PQ for sorting operation 

 Merge and Reduce phase can run in an overlapping manner 

  Pre-fetching and caching of Map Output Files are 

introduced to accelerate the response from TaskTracker 

for each request of ReduceTasks 

 Performance evaluation shows 39% (31%) reduction 

in time with 2 HDD/node (1 HDD/node) for HDFS 

 Simplified prediction model 

[5] is empirically derived from the 

detailed performance model 

 Compared to Starfish, 

MACGYVER can achieve better 

speedup for different applications 

 Default MapReduce cannot take advantage of the underlying 

global file system in HPC clusters, such as Lustre 

 We propose an advanced design of HOMR, that can utilize 

Lustre and extract further benefits 

 The intermediate data directory can be configured to the local 

disks [4] or Lustre [6] or a combination of both [7] 

 Advanced design of HOMR can dynamically detect which shuffle 

policy is efficient for a particular job execution and switch from one to 

another during runtime 
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Software Distribution 
 HOMR is publicly available in “RDMA for Apache Hadoop” public release (http://hibd.cse.ohio-state.edu) 

 As of Sep '16, more than 17,850 downloads (190 different organizations) have taken place from this site 
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 We design a generalized parameter tuning and prediction framework (MACGYVER) for any MapReduce 

implementation [8] 

 Automatic tuning, profiling is 

performed for MapReduce 

implementations in Hadoop, Spark, 

and HOMR with file systems – 

HDFS, Lustre, and Tachyon 

 Generalized configuration 

parameter space is devised to 

facilitate different MapReduce 

implementations  

 MACGYVER can also perform profiling and performance prediction using performance analytical models 

MACGYVER (MR-2x-IPoIB) 
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Benchmarks 
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