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ACNN ODbjectives

1) Build foundations for modern, Big Data neuroscience technologi
through community partnership

2) Leverage the expertise and technologies developed by the ACN
Spoke investigators and our partners to integrate:

1) Data Sharing and Interoperabilitysing ontologydriven
standardization, provenance metadata management, integrated
Into the most modern database and databasediator
technologies

2) Analyticsleveraging upon the most agreed upon preprocessing
pipelines (LONI and HCP) and advanced network science
approaches to brain mapping

3) Computingapproaches based on high performance clusters,
MapReduce and Hadoop as well as canonical architectures will be
deployed and connected to data and analytics



ACNN Technologies, Infrastructure, and Domain
Applications
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Opportunities

AACNN data processifmucluding
ABig Datgrocessing (Hadoop, Spark, HBase, and Memcached)
A ientificcomputing MPI and PGAS)
A Scalable Graph processing
AVirtualizationand cloud
AHigh Performance Deep Learning

MVAPICH2 (MPI, PGAS,
Accelerators, Cloud)

Research




OSU Team

AStrong expertise on HPC, Big Data, Deep Learning,
Communication, 1/O, etc.

Dhabaleswar K. Pl High-Performance Computing, MPI, PGAS, High
Panda Performanca\etworks

Khaled Hamidouche CoPIl Accelerators, NVDI&PU, Intel MIC, Deep Learning

Xiaoyi Lu CoPIl Big Daa Processing (Hadoop, SparBase
Memcached) and Cloud Computing

Hari Subramoni CoPl Communication and 1/O, HigPerformance
Communication Protocols

Mark Arnold Staff SystemManagement, Engineering



The HigHPerformance Big Data (HiBD) Project

A http://hibd.cse.ohio-state.edu

A RDMAfor Apache Spark

A RDMA for Apache Hadoop 2.x (RDM&doop2.x)
A Plugins for Apache, Hortonworks (HDP) and Cloudera (CDH) Hadoop distributions

A RDMA for Apache HBase

A RDMA for Memcached (RDMAemcached) Available for InfiniBand and RoCE
A RDMA for Apache Hadoop 1.x (RDMadoop)

A OSU HiBBenchmarks (OHB)
A HDFS, Memcached, and HBase Mimeachmarks

A UsersBase: 190 organizations from 26 countries
A More than 17,800 downloads from the project site

A RDMA for Impala (upcoming)
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Different Modes oRDMA for Apache Hadoop 2.X

Job RDMA-enhanced MapReduce
Seheduiers Intermediate Data Dir
[ Local disks (SSD, HDD) ] [ Lustre ]
SLURM RDMA-
enhanced

RDMA-enhanced HDFS RPC

Burst Buffer
In-memory | [Heterogeneous| |With Lustre| | [(Memcached)| | | Lustre
PBS (HHH-M) [|Storage (HHH) (| (HHH-L) with Lustre
(HHH-L-BB)

HHH Heterogeneous storage devices with hybrid replication schemes are supported in this mode of operation to have bettdefantte as well as
performance. This mode is enableddxfault in the package.

HHHM: A highperformance inmemory based setup has been introduced in this package that can be utilized to perform all /O oparatmemory and
obtain as much performance benefit as possible.

HHHL: With parallel file systems integrated, HHHnode can take advantage of the Lustre available in the cluster.

HHHL-BE This mode deploys a Memcachbdsed burst buffer system to reduce the bandwidth bottleneck of shared file system accessir3tiaulfer design
Is hosted by Memcached servers, each of which has a local SSD.

MapReduce over Lustre, with/without local diskBesides, HDFS based solutions, this package also provides support to run MapReduce jobs on top of
alone. Here, two different modes are introduced: with local disks and without local disks.

Running with Slurm and PBSupports deploying RDMA for Apache Hadoop 2.x with Slurm and PBS in different running modes (HAHIHHIH and
MapReduce over Lustre).



Performance BenefitsRandomWriter & TeraGen in TACC
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Evaluation of HHH and HHiRvith Applications
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Design Overview of Spark with RDMA

Spark Applications
(Scala/Jdava/Python)
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Netty
Shuffle
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Shuffle
Server
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BlockFetcherlterator

Java NIO Netty RDMA
Shuffle Shuffle Shuffle
Fetcher Fetcher Fetcher
(default) (optional) (plug-in)

Z

Java Socket

RDMA-based Shuffle Engine

(Java/dNI)
1/10 Gig Ethernet/IPolB (QDR/FDR) Native InfiniBand
Network (QDR/FDR)

ADesignFeatures
A RDMA based shuffle
A SEDAvased plugins

A Dynamic connection managemer
and sharing

A Nonblocking data transfer
A Off-JVMheap buffer managemen
A InfiniBandRoCE support

w Enables high performance RDMA communication, while supporting traditional socket interface

w JNI Layer bridges Scala based Spark with communication library written in native code

X. Lu, M. W. Rahman, N. Islam, D. Shankar, and D. K. Panda, Accelerating Spark with RDMA for Big Data Processingndes;ly E:
Int'l Symposium on High Performance Interconnects (Hotl'14), August 2014



Performance Evaluation @DSC CometSortBy/GroupBy
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A RDMAbased design for Spark 1.5.1
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Performance Evaluation @DSC ComeHiBench PageRank
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Performance Evaluation on SDSC CoAsttonomy
Application

AKira Toolkit: Distributed astronomy image 120

processing toolkit implemented using Apache.o J 21 %

Spark. 80
ASourceextractorapplication, using 85GB 60

dataset from the SDSS DR2 survey that 40

comprises 11,150 imadges. =

ACompare RDMA&park performance with the ¢
standardapacheimplementation usindPolB. SOMA SR CmnelaRARRE SP2TX (FOT8)
Execution times (sec) for Kira SE

1. Z. Zhang, K. Barbary, F. A. Nothaft, E.R. Sparks, M.J. Franklin, D.A. Patterson, benchmark using 65 GB dataset. 48 cor:
S. Perlmutter. Scientific Computing meets Big Data Technology: An Astronomy ’

Use Case CoRR, vol: abs/1507.0332Aug 2015.

M. Tatineni, X. Lu, D. J. Choi, A. Majumdar, and D. K. Panda, Experiences and Benefits of Running RDMA Hadoop an8Gpamkedn SD
- {959QmMcZ Wdzt € HAamc



Performance Evaluation on SDSC Cohagic Modeling
Application

AApplication in Social Sciences: Topic
modeling using big data middleware and
tools*.

ALatent Dirichlet Allocation (LDA) for

unsupervised analysis of large document
COl IeCtions_ Default Spark with IPolB does not scale!

AComputational complexity increases as the
volume of data increases.

ARDMA Spark enabled simulation of largest
test cases.

*Investigating Topic Models for Big Data Analysis in Social Science Domain
Nitin Sukhija, Nicole Brown, Paul Rodriguez, Mahidhar Tatineni, and Mark

Van Moer, XSEDE16 Poster Paper RDMASpark can scale very well



